Electrochemical reforming of ethanol with acetate Co-Production on nickel cobalt selenide nanoparticles

Chemical Engineering Journal(2022)

引用 15|浏览24
暂无评分
摘要
The energy efficiency of water electrolysis is limited by the sluggish reaction kinetics of the anodic oxygen evolution reaction (OER). To overcome this limitation, OER can be replaced by a less demanding oxidation reaction, which in the ideal scenario could be even used to generate additional valuable chemicals. Herein, we focus on the electrochemical reforming of ethanol in alkaline media to generate hydrogen at a Pt cathode and acetate as a co-product at a Ni1-xCoxSe2 anode. We first detail the solution synthesis of a series of Ni1-xCoxSe2 electrocatalysts. By adjusting the Ni/Co ratio, the electrocatalytic activity and selectivity for the production of acetate from ethanol are optimized. Best performances are obtained at low substitutions of Ni by Co in the cubic NiSe2 phase. Density function theory reveals that the Co substitution can effectively enhance the ethanol adsorption and decrease the energy barrier for its first step dehydrogenation during its conversion to acetate. However, we experimentally observe that too large amounts of Co decrease the ethanol-to-acetate Faradaic efficiency from values above 90% to just 50 %. At the optimized composition, the Ni0.75Co0.25Se2 electrode delivers a stable chronoamperometry current density of up to 45 mA cm−2, corresponding to 1.2 Ag−1, in a 1 M KOH + 1 M ethanol solution, with a high ethanol-to-acetate Faradaic efficiency of 82.2% at a relatively low potential, 1.50 V vs. RHE, and with an acetate production rate of 0.34 mmol cm−2h−1.
更多
查看译文
关键词
Electrocatalysis,Ethanol reforming,Hydrogen production,Selenide nanoparticle,Acetate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要