Two-Stage Intelligent Model for Detecting Malicious DDoS Behavior


Cited 10|Views9
No score
5G technologies provide ubiquitous connectivity. However, 5G security is a particularly important issue. Moreover, because public datasets are outdated, we need to create a self-generated dataset on the virtual platform. Therefore, we propose a two-stage intelligent detection model to enable 5G networks to withstand security issues and threats. Finally, we define malicious traffic detection capability metrics. We apply the self-generated dataset and metrics to thoroughly evaluate the proposed mechanism. We compare our proposed method with benchmark statistics and neural network algorithms. The experimental results show that the two-stage intelligent detection model can distinguish between benign and abnormal traffic and classify 21 kinds of DDoS. Our analysis also shows that the proposed approach outperforms all the compared approaches in terms of detection rate, malicious traffic detection capability, and response time.
Translated text
Key words
malicious behavior, statistic model, neural network model, DDoS
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined