# List Covering of Regular Multigraphs.

International Workshop on Combinatorial Algorithms (IWOCA)（2022）

Abstract

A graph covering projection, also known as a locally bijective homomorphism, is a mapping between vertices and edges of two graphs which preserves incidencies and is a local bijection. This notion stems from topological graph theory, but has also found applications in combinatorics and theoretical computer science. It has been known that for every fixed simple regular graph $H$ of valency greater than 2, deciding if an input graph covers $H$ is NP-complete. In recent years, topological graph theory has developed into heavily relying on multiple edges, loops, and semi-edges, but only partial results on the complexity of covering multigraphs with semi-edges are known so far. In this paper we consider the list version of the problem, called \textsc{List-$H$-Cover}, where the vertices and edges of the input graph come with lists of admissible targets. Our main result reads that the \textsc{List-$H$-Cover} problem is NP-complete for every regular multigraph $H$ of valency greater than 2 which contains at least one semi-simple vertex (i.e., a vertex which is incident with no loops, with no multiple edges and with at most one semi-edge). Using this result we almost show the NP-co/polytime dichotomy for the computational complexity of \textsc{ List-$H$-Cover} of cubic multigraphs, leaving just five open cases.

MoreTranslated text

Key words

list

AI Read Science

Must-Reading Tree

Example

Generate MRT to find the research sequence of this paper

Chat Paper

Summary is being generated by the instructions you defined