Using Real-Time Cell Metabolic Flux Analyzer to Monitor Osteoblast Bioenergetics.

Journal of visualized experiments : JoVE(2022)

引用 2|浏览0
暂无评分
摘要
Bone formation by osteoblasts is an essential process for proper bone acquisition and bone turnover to maintain skeletal homeostasis, and ultimately, prevent fracture. In the interest to both optimize peak bone mass and combat various musculoskeletal diseases (i.e., post-menopausal osteoporosis, anorexia nervosa, type 1 and 2 diabetes mellitus), incredible efforts have been made in the field of bone biology to fully characterize osteoblasts throughout their differentiation process. Given the primary role of mature osteoblasts to secrete matrix proteins and mineralization vesicles, it has been noted that these processes take an incredible amount of cellular energy, or adenosine triphosphate (ATP). The overall cellular energy status is often referred to as cellular bioenergetics, and it includes a series of metabolic reactions that sense substrate availability to derive ATP to meet cellular needs. Therefore, the current method details the process of isolating primary, murine bone marrow stromal cells (BMSCs) and monitoring their bioenergetic status using the Real-time cell metabolic flux analyzer at various stages in osteoblast differentiation. Importantly, these data have demonstrated that the metabolic profile changes dramatically throughout osteoblast differentiation. Thus, using this physiologically relevant cell type is required to fully appreciate how a cell's bioenergetic status can regulate the overall function.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要