Reduced graphene oxide nanofluidic electrolyte with improved electrochemical properties for vanadium flow batteries

JOURNAL OF ENERGY STORAGE(2022)

引用 13|浏览9
暂无评分
摘要
Development of the Vanadium Redox Flow Battery (VRFB) has been widely reported but typically only focuses on one part of the cell (e.g. electrode, electrolyte, or membrane). Improvement to a single part of the cell may cause side effects on other parts during long-term cycling leading to an overall drop in the performance of the battery. To avoid this, the use of nanofluidic electrolyte seems to be a promising approach to enhance the performance of both electrode and electrolyte simultaneously. This paper aims to investigate the electrochemical performance of a newly prepared reduced graphene oxide (rGO) nanofluidic vanadium electrolyte, applicable for Vanadium Redox Flow Batteries (VRFB). Herein, we report for the first time a stable rGO/vanadium nanofluidic electrolyte with improved electrochemical performance. Benefiting from the low degree of oxidation as compared to GO, the rGO can provide high electrical conduction due to the presence of sufficient functional groups, which can facilitate the redox reactions. The effect of various concentrations of rGO on the electro-chemical performance is investigated. The current collector (carbon cloth (CC) electrode) was further charac-terized using different physico-chemical techniques to underpin the stability of rGO nanofluids. The results suggested that the electrochemical performance of vanadium electrolyte increases with the concentration of rGO. Improvements of approx. 15% to 20% were achieved in peak potential separation and current density rates, respectively. In addition, the incorporation of rGO in nanofluidic electrolyte significantly decreases the elec-trolyte and charge transfer resistance by-10% and-99%, respectively, and improves the vanadium ion diffusion process by-50%.
更多
查看译文
关键词
Nanofluidic electrolyte,Electrochemical behavior,Vanadium flow battery,Reduced graphene oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要