Seasonal Variability in the Mechanisms behind the 2020 Siberian Heatwaves

JOURNAL OF CLIMATE(2022)

引用 7|浏览17
暂无评分
摘要
Record-breaking heatwaves and wildfires immersed Siberia during the boreal spring of 2020 following an anomalously warm winter. Springtime heatwaves are becoming more common in the region, with statistically significant trends in the frequency, magnitude, and duration of heatwave events over the past four decades. Mechanisms by which the heatwaves occur and contributing factors differ by season. Winter heatwave frequency is correlated with the atmospheric circulation, particularly the Arctic Oscillation, while the frequency of heatwaves during the spring months is highly correlated with aspects of the land surface including snow cover, albedo, and latent heat flux. Idealized AMIP-style experiments are used to quantify the contribution of suppressed Arctic sea ice and snow cover over Siberia on the atmospheric circulation, surface energy budget, and surface air temperature in Siberia during the winter and spring of 2020. Sea ice concentration contributed to the strength of the stratospheric polar vortex and Arctic Oscillation during the winter months, thereby influencing the tropospheric circulation and surface air temperature over Siberia. Warm temperatures across the region resulted in an earlier-than-usual recession of the winter snowpack. The exposed land surface contributed to up to 20% of the temperature anomaly during the spring through the albedo feedback and changes in the ratio of the latent and sensible heat fluxes. This, in combination with favorable atmospheric circulation patterns, resulted in record-breaking heatwaves in Siberia in the spring of 2020.
更多
查看译文
关键词
Atmospheric circulation,Extreme events,Arctic Oscillation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要