Hygroscopic behavior and phase state of mixed NH4NO3/amino acids particles by microscopy and IR technology

ATMOSPHERIC ENVIRONMENT(2022)

引用 2|浏览1
暂无评分
摘要
Water-soluble amino acids have been confirmed as effective cloud condensation nuclei (CCN) materials. While their influence on the hygroscopicity of nitrates is still scarcely known. In this work, ammonium nitrate (AN) was mixed with glycine and alanine at various mole ratios to form internally mixed particles deposited onto a solid substrate, whose hygroscopic properties and phase states of ingredients were investigated using microscope and attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR). For mixed AN/amino acid particles with abundant inorganic, AN crystallizes at lower RH than that of pure AN, while deliquescence relative humidities (DRHs) were close to pure AN. On hydration, the mixture composed of bis(amino acid) nitrates and mono(amino acid) nitrates formed at 14.6-60.8% RH and 23.6%-60.0% RH for AN/glycine and AN/alanine particles, respectively. When the inorganic and organic components were mixed with equal mole ratio, gradual water uptake and release took place due to the hygroscopic interplay between components. In the mixed particles with abundant amino acids, glycine and alanine still kept solid at highest RH on hydration. Hydrogen bonding interaction should account for the mutual suppression on individual crystal formation. The present hygroscopic study would help people understanding cloud condensation nuclei (CCN) ability of amino acids in atmosphere.
更多
查看译文
关键词
Hygroscopic properties,Amino acid,Ammonium nitrate,Microscopy technology,ATR-FTIR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要