Graphene oxide chronic exposure enhanced perfluorooctane sulfonate mediated toxicity through oxidative stress generation in freshwater clam Corbicula fluminea

Chemosphere(2022)

引用 8|浏览7
暂无评分
摘要
Graphene oxide (GO), a frequently utilized graphene family nanomaterial, is inevitably released into the aquatic environment and interacts with organic pollutants, including perfluorooctane sulfonate (PFOS), a well-known persistent organic pollutant. To determine the adverse effects of GO chronic exposure on PFOS bioaccumulation and toxicity, adult freshwater bivalves, namely Asian clams (Corbicula fluminea) were treated for 28 days with PFOS (500 ng/L) and different concentrations of GO (0.2, 1, 5 mg/L) as PFOS single and GO single exposure groups, as well as PFOS-GO mixture exposure groups. Our results demonstrated that the bioaccumulation of PFOS was significantly enhanced by co-exposure in gills and visceral masses, which was 1.64–2.91 times higher in gills than in visceral masses. Both single, as well as co-exposure, caused a significant reduction in clams’ siphoning behavior, compared to the controls. Further, the co-exposure significantly increased the production of reactive oxygen species (ROS), exacerbating malondialdehyde (MDA) content, enhancing superoxide dismutase (SOD) and catalase (CAT), while decreasing glutathione reductase (GR) and glutathione S-transferase (GST) enzymatic activities in clam tissues. And co-exposure significantly altered the expressions of se-gpx, sod, cyp30, hsp40, and hsp22 genes (associated with oxidative stress and xenobiotic metabolism) both in gills and visceral masses. Moreover, co-exposure caused significant histopathological changes such as cilia degradation in the gills, expansion of tubule lumens in digestive glands, and oocyte shrinkage in gonads. Finally, the enhanced integrated biomarker response (EIBR) index revealed that co-exposure to 500 ng/L PFOS + 1 mg/L/5 mg/L GO was the most stressful circumstance. Overall, our findings suggested that the presence of GO increased PFOS bioaccumulation in tissues, inducing multifaceted negative implications at molecular and behavioral levels through oxidative stress generation in Asian clams.
更多
查看译文
关键词
Perfluorooctane sulfonate,Graphene oxide,Co-exposure,Oxidative stress,Gene expression,Corbicula fluminea
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要