A heterogeneous III-V/Si3N4 quantum photonic integration platform (Conference Presentation)

Quantum Photonic Devices(2017)

引用 0|浏览2
暂无评分
摘要
Photonic integration is an enabling technology for photonic quantum science, offering greater scalability, stability, and functionality than traditional bulk optics. Here, we describe a scalable, heterogeneous III-V/silicon integration platform to produce Si3N4 photonic circuits incorporating GaAs-based nanophotonic devices containing self-assembled InAs/GaAs quantum dots. We demonstrate pure single-photon emission from individual quantum dots in GaAs waveguides and cavities - where strong control of spontaneous emission rate is observed - directly launched into Si3N4 waveguides with > 90 % efficiency through evanescent coupling. To date, InAs/GaAs quantum dots constitute the most promising solid state triggered single-photon sources, offering bright, pure and indistinguishable emission that can be electrically and optically controlled. Si3N4 waveguides offer low-loss propagation, tailorable dispersion and high Kerr nonlinearities, desirable for linear and nonlinear optical signal processing down to the quantum level. We combine these two in an integration platform that will enable a new class of scalable, efficient and versatile integrated quantum photonic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要