A RFID-Based Monitoring System for Characterization of Perching Behaviors of Individual Poultry

10th International Livestock Environment Symposium (ILES X) with 1st U.S. Precision Livestock Farming Symposium(2018)

引用 0|浏览3
暂无评分
摘要
Abstract. Perching is a natural behavior of poultry. However, it is difficult to distinguish individual birds in a large group in order to relate perching behavior to health condition or productivity. To enable such research, this study developed and validated a radio frequency identification (RFID)-based automated perching monitoring system (APMS) for characterizing individual perching behaviors of group-housed poultry. The APMS consisted of a RFID module, a load cell module, and a round wooden perch. The RFID module was comprised of a high-frequency RFID reader, three customized rectangular antennas, and multiple RFID transponders. The load cell module was comprised of a data acquisition system and two load cells supporting the two ends of the perch. Daily number of perch visits (PV) and perching duration (PD) of individual birds were used to delineate perching behavior. Three identical experimental pens, five hens per pen, were equipped with the monitoring system. Two RFID transponders were attached to each hen (one per leg) and a distinct color was marked on the bird‘s head for video or visual identification. Performance of the APMS was validated by comparing the system outputs with manual observation/labeling over an entire day. Sensitivity and specificity of the system were shown to improve from 97.77% and 99.88%, respectively, when using only the RFID module, to 99.83% and 99.93%, respectively, when incorporating weight information from the load cell module. This study revealed that the APMS has an excellent performance in measuring perching behaviors of individual birds in a group. The APMS offers great potentials for delineating differences in perching behavior among hens with different social status or health conditions in a group setting.
更多
查看译文
关键词
monitoring system,rfid-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要