An investigation of collisions of liquid coated particles

Epj Web of Conferences(2021)

引用 0|浏览0
暂无评分
摘要
The presence of even small amounts of liquid between particles dramatically changes the dynamics of collisions. This study considers granular collisions between two particles coated with a thin layer of viscous liquid, such that the capillary number is high and viscous forces dominate. High-speed particle tracking velocimetry was used to experimentally study the collisions of two smooth spheres with and without liquid coatings. We then use these experiments to examine four theoretical models that describe the collisions. A key challenge when modelling viscous forces is that the force which is predicted as particles approach each other scales with the inverse of the distance, i.e. tends to infinity. Most existing models impose a limit to the viscous force. One recent model instead assumes a hard sphere collision. These fundamentally different approaches produce different rebound outcomes. A fair match between experiments and simulations was obtained when using the hard sphere collision model, but only if an empirically-fitted glass transition pressure model was used to describe the minimum approach distance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要