Quasi-atomic layer etching of Si and nitride hard mask with Cl2 based chemistry

Tao Li, Stefan Schmitz, Phil Friddle,Samantha Tan,Wenbing Yang,Indira Seshadri

Advanced Etch Technology and Process Integration for Nanopatterning X(2021)

引用 0|浏览14
暂无评分
摘要
The ability to etch silicon highly anistropically at active fin heights of 45nm or greater is critical to fin patterning for continued CMOS scaling. Tight control of fin CD and taper is critical toward controlling the device, with particular importance to channel control. In this study we explore the quasi-atomic layer etch (qALE) parameter space in order to better understand the impact of plasma conditions on fin CD, profile, and aspect ratio dependent etch phenomena. A qALE solution is needed to provide a manufacturable solution for a vertical square bottom fin. In this study a cyclic chlorination (surface modification) + ion bombardment process (modified surface removal) is used to etch Si with a Si3N4 hard mask. Various parameters are explored including bias power, pressure, and time in the ion bombardment step as well as source power, pressure, and time in the chlorination step. With regards to the ion bombardment step, varying time helps to quantify the self-limitation of the etch process, modulating pressure helps to quantify the impact of reduced mean free path and ion density, and modifying source power helps to quantify the impact of changes to ion density. For the chlorination step, varying time helps to quantify the self-limitation of surface modification mechanism, and modifying source power illustrates the impact of Cl radical density on surface modification. These various mechanisms will be explored with the particular view point of how these changes can impact ultimate channel performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要