Electrical transport properties of n- and p- doped InSe: Bulk crystals versus exfoliated layers

Low-Dimensional Materials and Devices 2020(2020)

引用 0|浏览0
暂无评分
摘要
Efficient doping of 2D materials, including carrier type, concentration and mobility, is challenging but essential for enabling their future electronic and photonic applications. We are developing substitutional n- and p- doping of InSe semiconductor by introducing Sn and Zn, respectively, in the Bridgman bulk crystal growth. Electrical transport properties of undoped vs. n- and p- doped InSe crystals are compared by conducting Hall measurements on bulk crystals and FET transport measurements on exfoliated thin layers. Undoped InSe is intrinsically n-type in both bulk and thin-film forms, with [n]~3.5E14 cm-3 and mu values of up to 1,400 cm2 V-1 s-1 for thick layers at 300K. Carrier concentration in Sn-doped thick layers increases approximately two-fold, while the corresponding mobility reduces ~2 times at 300 K. Zn-doped InSe shows p- behavior for bulk InSe with [p]~7.9E13 cm-3 and mu~43 cm2 V-1 s-1 at 300 K, which reverts to ambipolar/n- type behavior for thin layers in FET devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要