Characterization of Fault Signature due to Combined Air-Gap Eccentricity and Rotor Faults in Induction Motors

International Review on Modelling and Simulations(2021)

引用 0|浏览0
暂无评分
摘要
An accurate means of non-invasive condition monitoring of the popular industrial drive, three-phase squirrel-cage induction motor, can help to avoid unscheduled maintenance downtime and loss. Faults like air-gap eccentricity can exist even in a newly assembled drive and hence may co-exist with other internal defects. Despite it being a possible situation, the occurrence of simultaneous faults has seldom been studied. Therefore, there is a need for identifying fault signatures of combined fault conditions in a non-invasive manner. This paper presents a detailed model-based study on a three-phase squirrel-cage induction motor with the simultaneous existence of broken rotor-bar and air-gap mixed eccentricity faults using spectral analysis of stator current, instantaneous power, and estimated air-gap torque signals. The modelling of the machine is done using the Multiple Coupled Circuit method and modified to model the presence of the combined fault conditions. A comparative evaluation with various fault conditions and their severity is carried out by spectral analysis, and unique slip-dependent frequency components are identified in the spectra of diagnostic signals. This fault characterization is the most significant contribution of this paper.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要