Well Connectivity Analysis with Deep Learning

SPE Annual Technical Conference and Exhibition(2021)

引用 0|浏览1
暂无评分
摘要
Abstract Knowledge of well connectivity in a reservoir is crucial, especially for early-stage field development and water injection management. However, traditional interference tests can often take several weeks or even longer depending on the distance between wells and the hydraulic diffusivity of the reservoir. Therefore, instead of physically shutting in production wells, we can take advantage of deep learning methods to perform virtual interference tests. In this study, we first used the historical field data to train the deep learning model, a modified Long- and Short-term Time-series network (LSTNet). This model combines the Convolution Neural Network (CNN) to extract short-term local dependency patterns, the Recurrent Neural Network (RNN) to discover long-term patterns for time series trends, and a traditional autoregressive model to alleviate the scale insensitive problem. To address the time-lag issue in signal propagation, we employed a skip-recurrent structure that extends the existing RNN structure by connecting a current state with a previous state when the flow rate signal from an adjacent well starts to impact the observation well. In addition, we found that wells connected to the same manifold usually have similar liquid production patterns, which can lead to false causation of subsurface pressure communication. Thus we enhanced the model performance by using external feature differences to remove the surface connection in the data, thereby reducing input similarity. This enhancement can also amplify the weak signal and thus distinguish input signals. To examine the deep learning model, we used the datasets generated from Norne Field with two different geological settings: sealing and nonsealing cases. The production wells are placed at two sides of the fault to test the false-negative prediction. With these improvements and with parameter tuning, the modified LSTNet model could successfully indicate the well connectivity for the nonsealing cases and reveal the sealing structures in the sealing cases based on the historical data. The deep learning method we employed in this work can predict well pressure without using hand-crafted features, which are usually formed based on flow patterns and geological settings. Thus, this method should be applicable to general cases and more intuitive. Furthermore, this virtual interference test with a deep learning framework can avoid production loss.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要