The electrospun polyacrylonitrile/covalent organic framework nanofibers for efficient enrichment of trace sulfonamides residues in food samples.

Journal of chromatography. A(2022)

引用 11|浏览11
暂无评分
摘要
In this work, the electrospun polyacrylonitrile/covalent organic frameworks Tp-BD nanofibers (PAN/Tp-BD) were synthesized and applied as an adsorbent for thin film microextraction (TFME) of seven sulfonamides in animal derived food samples. The morphology, structure, porosity, and stability of the prepared nanofibers were investigated. The PAN/Tp-BD nanofibers exhibited good chemical stability, high flexibility, porous fibrous structure, and excellent extraction efficiency. Based on the PAN/Tp-BD nanofibers as the adsorbent, a thin film microextraction-high performance liquid chromatography (TFME-HPLC) method for the determination of seven sulfonamides (SAs) in food samples was developed. Under the optimal conditions, the TFME-HPLC exhibited the low limit of detection (0.10-0.18 ng·mL-1), the low limit of quantitation (0.33-0.60 ng·mL-1), the wide linear range (0.5-50 ng·mL-1) with correlation coefficients between 0.994 and 0.998, and good enrichment factors between 39.7 to 170.1 towards 20 ng/mL SAs solution. The relative standard deviation (RSD) was lower than 11% in the interday and intraday analysis. Furthermore, the applicability of PAN/Tp-BD nanofibers was demonstrated for measuring trace SAs residues in the spiked food samples with recoveries ranging from 85.3% to 115.2%. The results demonstrated that the PAN/Tp-BD nanofibers have great potential for the efficient extraction of sulfonamides from complex food samples.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要