Reversible 100 mA Current Switching in a VO2/Al2O3-Based Two-Terminal Device Using Focused Far-Infrared Laser Pulses

Journal of Nanoscience and Nanotechnology(2021)

引用 2|浏览2
暂无评分
摘要
In this study, we implemented reversible current switching (RCS) of 100 mA in a two-terminal device based on a vanadium dioxide (VO2) thin film, which could be controlled by far-infrared (FIR) laser pulses. The VO2 thin films used for fabrication of two-terminal devices were grown on sapphire (Al2O3) substrates using a pulsed laser deposition method. An optimal deposition condition was determined by analyzing the resistance-temperature curves of deposited VO2 thin films and the current–voltage characteristics of two-terminal devices based on these films, which were suggested in our previous works. The film surface of the VO2-based device was directly irradiated using focused CO2 laser pulses, and the insulator-metal transition or metal-insulator transition of the VO2 thin film could be triggered depending on laser irradiation. Consequently, RCS of up to 100 mA could be accomplished. This on-state current is close to the upper limit of the current flowing through our VO2 device. The switching contrast, defined as the ratio between on-state and off-state currents, was evaluated and found to be ˜11,962. The average rising and falling times of the switched current were found to be ˜29.2 and ˜71.7 ms, respectively. In comparison with our previous work, the improved heat dissipation structure and the high-quality thin film could maintain the switching contrast at a similar level, although the on-state current was increased by about two times.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要