Reconciling qualitative, abstract, and scalable modeling of biological networks

Nature Communications(2020)

引用 0|浏览0
暂无评分
摘要
Predicting biological systems’ behaviors requires taking into account many molecular and genetic elements for which limited information is available past a global knowledge of their pairwise interactions. Logical modeling, notably with Boolean Networks (BNs), is a well-established approach that enables reasoning on the qualitative dynamics of networks. Several dynamical interpretations of BNs have been proposed. The synchronous and (fully) asynchronous ones are the most prominent, where the value of either all or only one component can change at each step. Here we prove that, besides being costly to analyze, these usual interpretations can preclude the prediction of certain behaviors observed in quantitative systems. We introduce an execution paradigm, the Most Permissive Boolean Networks (MPBNs), which offers the formal guarantee not to miss any behavior achievable by a quantitative model following the same logic. Moreover, MPBNs significantly reduce the complexity of dynamical analysis, enabling to model genome-scale networks. Boolean Networks are a well-established model of biological networks, but usual interpretations can preclude the prediction of behaviours observed in quantitative systems. The authors introduce Most Permissive Boolean Networks, which are shown not to miss any behaviour achievable by the corresponding quantitative model.
更多
查看译文
关键词
Computer modelling,Computer science,Dynamic networks,Dynamical systems,Regulatory networks,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要