Long‐term rotation diversity and nitrogen effects on soil organic carbon and nitrogen stocks

Agrosystems, Geosciences & Environment(2020)

引用 10|浏览3
暂无评分
摘要
Abstract Understanding the impacts of long‐term fertilizer management and rotation diversity on soil C and N is needed under a changing climate. The objective of this study was to evaluate the effects of N fertilizer level and crop rotation diversity on soil organic carbon (SOC) and soil N stocks from a 34‐yr study located in eastern Nebraska. Seven crop rotations (three continuous cropping systems; two 2‐yr crop rotations; and two 4‐yr crop rotations) and three N levels were compared. Soil samples were taken to a depth of 150 cm. Differences in SOC stocks were largely confined to the 0‐ to 7.5‐cm depth, with greater SOC (P = .0002) in rotations than continuous cropping systems and greater SOC (P = .0004) in 4‐yr vs. 2‐yr rotations. Total soil N was greater with increased crop rotation diversity for the 0‐ to 30‐cm soil profile. Greater SOC levels occurred with N fertilization for the 0‐ to 7.5‐cm depth. At the 0‐ to 150‐cm soil depth, SOC stocks were similar between N levels and greater for the 4‐yr vs. 2‐yr crop rotations (P = .0492). Trends in total N stocks were similar to those of SOC stocks. Overall, crop rotation had a larger effect on SOC and N stocks than N fertilizer.
更多
查看译文
关键词
soil,nitrogen effects,organic carbon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要