Orbital Perigee Deviation under Inclination Window for Sun Synchronized Low Earth Orbits

European Journal of Engineering Research and Science(2019)

引用 0|浏览2
暂无评分
摘要
Data processing related to the Earth’s changes, gathered from different platforms and sensors implemented worldwide and monitoring the environment and structure represents Earth observation (EO). Environmental monitoring includes changes in Earth’s vegetation, atmospheric gas content, ocean state, melting level in the ice fields, etc. This process is mainly performed by satellites. The Earth observation satellites use Low Earth Orbits (LEO) for their missions. These missions are accomplished mainly based on photo imagery. Thus, the relative Sun’s position related to the observed area, it is very important for the photo imagery, in order the observed area from the satellite to be treated under the same lighting (illumination) conditions. This could be achieved by keeping a constant Sun position related to the orbital plane due to the Earth’s motion around the Sun. This is called Sun synchronization for low Earth orbits, the feature which is applied for satellites dedicated for the Earth observation. Nodal regression is the phenomenon which is utilized for low circular orbits providing to them the Sun synchronization. Nodal regression refers to the shift of the orbit’s line of nodes over time as Earth revolves around the Sun, caused due to the Earth’s oblateness. Nodal regression depends on orbital altitude and orbital inclination angle. For the in advance defined range of altitudes stems the inclination window for the satellite low Earth orbits to be Sun synchronized. For analytical and simulation purposes, the altitudes from 600km to 1200km are considered. Further for the determined inclination window of the Sun synchronization it is simulated the orbital perigee deviation for the above considered altitudes and the eventual impact on the satellite’s mission.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要