Characterizing turbulence profile layers through celestial single-source observations

APPLIED OPTICS(2022)

引用 5|浏览2
暂无评分
摘要
Future spacecraft missions aim to communicate with the Earth using near-infrared lasers. The possible bit rate of free-space optical communication (FSOC) is orders of magnitude greater when compared to current radio frequency transmissions. The challenge of ground-space FSOC is that atmospheric turbulence perturbs optical wavefront propagation. These wavefront aberrations can be measured using a Shack-Hartmann wavefront sensor (SHWFS). A ground-based adaptive optics (AO) system can mitigate these aberrations along the optical path by translating wavefront measurements into deformable mirror commands. However, errors result from atmospheric turbulence continuously evolving, and there are unavoidable delays during AO wavefront correction. The length of an acceptable delay is referred to as the coherence time-a parameter dependent on the strength of turbulence profile layers and their corresponding wind-driven velocity. This study introduces a novel technique, to the best of our knowledge, for using SHWFS single-source observations, e.g., the downlink signal from a geostationary satellite, to measure the strength and velocity of turbulence profile layers. This work builds upon previous research and demonstrates that single-source observations can disentangle turbulence profile layers through studying the cross-covariance of temporally offset SHWFS centroid measurements. Simulated data are used to verify that the technique can recover the coherence time. The expected and measured results have a correlation coefficient of 0.95. (C) 2022 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要