The compensation effect between safety and efficiency in xylem and role in photosynthesis of gymnosperms

PHYSIOLOGIA PLANTARUM(2022)

引用 4|浏览2
暂无评分
摘要
The classical theory of safety-efficiency trade-off is a common theme in plant sciences. Despite safety and efficiency partly compensating for each other physiologically (namely, there is a compensation effect, CE, among traits from the "whole" organism perspective), they are always mathematically described as a trade-off against one another. However, the compensation effect has never been defined and quantified, let alone its role in the xylem water transport and subsequently photosynthesis. Here, we developed an alternative theory to define the CE as a positive relationship between safety and efficiency, and further define a new trade-off index, SETO, that is expressed as CE multiplied by a trade-off factor (differing from the classical average trade-off value). Then, we tested SETO- and CE-photosynthetic rate relationships across different levels based on a common garden experiment using nine conifers and published data for gymnosperms. The results demonstrated that the compensation effect in xylem functions was the dominant force in facilitating photosynthetic rates from species- to phylum-scale. By integrating the compensation effect into the xylem hydraulic functional strategy, our study clearly indicated that the compensation effect is the evolutionary basis for the coordination of xylem hydraulic and photosynthesis physiology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要