Modular Additive Construction Using Native Materials

A. Scott Howe,Brian Wilcox, Chris McQuin, David Mittman,Julie Townsend, Raul Polit-Casillas, Todd Litwin

Earth and Space 2014(2015)

引用 5|浏览0
暂无评分
摘要
Using modular construction equipment and additive manufacturing (3D printing) techniques for binding, mission support structures could be prepared on remote planetary surfaces using native regolith. Material mass contributes significantly toward the cost of deep space missions, whether human or robotic, due to the resources needed to lift each kilogram of equipment out of Earth’s gravity well. Proposing the modular Freeform Additive Construction System (FACS) concept, using the reconfigurable All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility platform, a variety of walls, berms, vaults, domes, paving, and thick radiation shielding could be prepared in advance of crews and mission assets to help reduce the material needed to be brought from Earth. This paper discusses the current ATHLETE technology, and describes how flexible mission elements could be derived using a combination of three dimensional additive construction and in-situ manufacturing technologies using native regolith.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要