On the Information-Theoretic Security of Combinatorial All-or-Nothing Transforms

IEEE Transactions on Information Theory(2022)

引用 1|浏览15
暂无评分
摘要
All-or-nothing transforms (AONTs) were proposed by Rivest as a message preprocessing technique for encrypting data to protect against brute-force attacks, and have numerous applications in cryptography and information security. Later the unconditionally secure AONTs and their combinatorial characterization were introduced by Stinson. Informally, a combinatorial AONT is an array with the unbiased requirements and its security properties in general depend on the prior probability distribution on the inputs $s$ -tuples. Recently, it was shown by Esfahani and Stinson that a combinatorial AONT has perfect security provided that all the inputs $s$ -tuples are equiprobable, and has weak security provided that all the inputs $s$ -tuples are with non-zero probability. This paper aims to explore on the gap between perfect security and weak security for combinatorial $(t,s,v)$ -AONTs. Concretely, we consider the typical scenario that all the $s$ inputs take values independently (but not necessarily identically) and quantify the amount of information $H(\mathcal {X}|\mathcal {Y})$ about any $t$ inputs $\mathcal {X}$ that is not revealed by any $s-t$ outputs $\mathcal {Y}$ . In particular, we establish the general lower and upper bounds on $H(\mathcal {X}|\mathcal {Y})$ for combinatorial AONTs using information-theoretic techniques, and also show that the derived bounds can be attained in certain cases. Furthermore, the discussions are extended for the security properties of combinatorial asymmetric AONTs.
更多
查看译文
关键词
All-or-nothing transform (AONT),unconditionally secure AONT,combinatorial AONT,perfect security,weak security,conditional entropy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要