A crystal-structural study of Pauling-Corey rippled sheets

CHEMICAL SCIENCE(2022)

引用 6|浏览4
暂无评分
摘要
Following the seminal theoretical work on the pleated beta-sheet published by Pauling and Corey in 1951, the rippled beta-sheet was hypothesized by the same authors in 1953. In the pleated beta-sheet the interacting beta-strands have the same chirality, whereas in the rippled beta-sheet the interacting beta-strands are mirror-images. Unlike with the pleated beta-sheet that is now common textbook knowledge, the rippled beta-sheet has been much slower to evolve. Much of the experimental work on rippled sheets came from groups that study aggregating racemic peptide systems over the course of the past decade. This includes MAX1/DMAX hydrogels (Schneider), L/D-KFE8 aggregating systems (Nilsson), and racemic Amyloid beta mixtures (Raskatov). Whether a racemic peptide mixture is "ripple-genic" (i.e., whether it forms a rippled sheet) or "pleat-genic" (i.e., whether it forms a pleated sheet) is likely governed by a complex interplay of thermodynamic and kinetic effects. Structural insights into rippled sheets remain limited to only a very few studies that combined sparse experimental structural constraints with molecular modeling. Crystal structures of rippled sheets are needed so we can rationally design rippled sheet architectures. Here we report a high-resolution crystal structure, in which (l,l,l)-triphenylalanine and (d,d,d)-triphenylalanine form dimeric antiparallel rippled sheets, which pack into herringbone layer structures. The arrangements of the tripeptides and their mirror-images in the individual dimers were in excellent agreement with the theoretical predictions by Pauling and Corey. A subsequent mining of the PDB identified three orphaned rippled sheets among racemic protein crystal structures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要