GR24-mediated enhancement of salt tolerance and roles of H2O2 and Ca2+ in regulating this enhancement in cucumber

Journal of Plant Physiology(2022)

引用 12|浏览6
暂无评分
摘要
This study investigated the regulation of the exogenous strigolactone (SL) analog GR24 in enhancing the salt tolerance and the effects of calcium ion (Ca2+) and hydrogen peroxide (H2O2) on GR24's regulation effects in cucumber. The seedlings were sprayed with (1) distilled water (CK), (2) NaCl, (3) GR24, then NaCl, (4) GR24, then H2O2 scavenger, then NaCl, and (5) GR24, then Ca2+ blocker, then NaCl. The second true leaf was selected for biochemical assays. Under the salt stress, the exogenous GR24 maintained the ion balance, increased the activity of antioxidant enzymes, reduced the membrane lipid peroxidation, and increased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), accompanied by a decrease in relative conductivity, an increase in the proline content, and elevated gene expression levels of antioxidant enzymes, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, calcium-dependent protein kinases (CDPKs), salt overly sensitive SOS1, CBL-interacting protein kinase 2 (CIPK2), and calcineurin B-like protein 3 (CBL3). Such protective effects triggered by GR24 were attenuated or almost abolished by ethylene glycol tetraacetic acid (EGTA), lanthanum chloride (LaCl3, Ca2+ channel blocker), diphenyleneiodonium (DPI, NADPH oxidase inhibitor), and dimethylthiourea (DMTU, hydroxyl radical scavenger). Our data suggest that exogenous GR24 is highly effective in alleviating salt-induced damages via modulating antioxidant capabilities and improving ionic homeostasis and osmotic balance and that H2O2 and Ca2+ are required for GR24-mediated enhancement of salt tolerance.
更多
查看译文
关键词
Strigolactones,Ion balance,Oxidative stress,Calcium signal,H2O2,Gene expression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要