A prospective approach for human-to-human interaction recognition from Wi-Fi channel data using attention bidirectional gated recurrent neural network with GUI application implementation

Multimedia Tools and Applications(2024)

引用 0|浏览8
暂无评分
摘要
Human Activity Recognition (HAR) research has gained significant momentum due to recent technological advancements, artificial intelligence algorithms, the need for smart cities, and socioeconomic transformation. However, existing computer vision and sensor-based HAR solutions have limitations such as privacy issues, memory and power consumption, and discomfort in wearing sensors for which researchers are observing a paradigm shift in HAR research. In response, WiFi-based HAR is gaining popularity due to the availability of more coarse-grained Channel State Information. However, existing WiFi-based HAR approaches are limited to classifying independent and non-concurrent human activities performed within equal time duration. Recent research commonly utilizes a Single Input Multiple Output communication link with a WiFi signal of 5 GHz channel frequency, using two WiFi routers or two Intel 5300 NICs as transmitter-receiver. Our study, on the other hand, utilizes a Multiple Input Multiple Output radio link between a WiFi router and an Intel 5300 NIC, with the time-series Wi-Fi channel state information based on 2.4 GHz channel frequency for mutual human-to-human concurrent interaction recognition. The proposed Self-Attention guided Bidirectional Gated Recurrent Neural Network (Attention-BiGRU) deep learning model can classify 13 mutual interactions with a maximum benchmark accuracy of 94% for a single subject-pair. This has been expanded for ten subject pairs, which secured a benchmark accuracy of 88% with improved classification around the interaction-transition region. An executable graphical user interface (GUI) software has also been developed in this study using the PyQt5 python module to classify, save, and display the overall mutual concurrent human interactions performed within a given time duration. Finally, this article concludes with a discussion of the possible solutions to the observed limitations and identifies areas for further research. Such a Wi-Fi channel perturbation pattern analysis is believed to be an efficient, economical, and privacy-friendly approach to be potentially utilized in mutual human interaction recognition for indoor activity monitoring, surveillance system, smart health monitoring systems, and independent assisted living.
更多
查看译文
关键词
Mutual human activity recognition,Wi-Fi based HAR,Remote monitoring,Smart home,Attention BiGRU,Deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要