Discrepant effects of monovalent cations on membrane fouling induced by colloidal polymer: Evaluation and mechanism investigation

Chemosphere(2022)

引用 8|浏览2
暂无评分
摘要
Understanding how ionic conditions affect membrane fouling induced by anionic polyacrylamide (APAM) is important for achieving long-term and stable operation of a polymer flooding produced wastewater (PFPW) membrane separation process. However, there is lack of studies on the effects of monovalent cations (Na+ and K+) on APAM-based membrane fouling. In this work, the effects of Na+ and K+ on filtration efficiency, flux decline behavior, fouling resistance, and cleaning efficiency were studied through a series of microfiltration tests. Moreover, the influencing mechanism of membrane fouling was further comprehensively revealed from the aspects of the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the hydration force, and the microstructure characterizations. The XDLVO theory agreed well with membrane fouling behavior at various ionic strengths. The increase in ionic strength (0–10,000 mg/L) of Na+ and K+ exacerbated the reduction of relative flux (J/J0) and the accumulation of fouling resistance, as well as made the porous APAM-induced fouling layer denser and more compact, boosting removal efficiency. Furthermore, K+ had a stronger aggravating effect on membrane fouling than Na+. Specifically, the final value of J/J0 for APAM+K+ (0.08) was lower than that for APAM + Na+ (0.12), and the fouling resistance for APAM+K+ (12.25 × 1011 m−1) was higher than that for APAM + Na+ (12.01 × 1011 m−1) at an ionic strength of 10,000 mg/L, which was owing to the larger hydration force caused by Na+ with a smaller ionic radius. This research offers practical guidance for the PFPW membrane filtering process.
更多
查看译文
关键词
Membrane fouling,Monovalent cations,Discrepant effect,Anionic polyacrylamide,Hydration force
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要