No leeway to enhance carbon sequestration and stock capacity via changes to forest management

biorxiv(2022)

引用 1|浏览9
暂无评分
摘要
Forest management interventions can act as value-based agents to remove CO2 from the atmosphere and slow anthropogenic climate change and thus might play a strategic role in the framework of the EU forestry-based mitigation strategy. To what extent diversified management actions could lead to quantitatively important changes in carbon sequestration potential and stocking capacity at the tree level remains to be thoroughly assessed. To that end, we used a state-of-the-science bio-geochemically based forest growth model to assess effects of multiple alternative forest management scenarios on plant net primary productivity (NPP) and potential carbon woody stocks (pCWS) under differing scenarios of climate change. The experiments indicated that the capacity of trees to assimilate and store atmospheric CO2 in recalcitrant standing woody tissue is already being attained as its optimum under business-as-usual forest management conditions regardless of the different climate change scenarios investigated. Nevertheless, on the long-term and under increasing atmospheric CO2 concentration and warming, managed forests show both higher productivity and a larger pool of stored carbon than unmanaged ones as long as forest thinning and tree harvesting are of moderate intensity. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要