Interspecies Comparison and Radiation Effect on Pharmacokinetics of BIO 300, a Nanosuspension of Genistein, after Different Routes of Administration in Mice and Non-Human Primates

RADIATION RESEARCH(2022)

引用 6|浏览13
暂无评分
摘要
BIO 300, a suspension of synthetic genistein nanoparticles, is being developed for mitigating the delayed effects of acute radiation exposure (DEARE). The purpose of the current study was to characterize the pharmacokinetic (PK) profile of BIO 300 administered as an oral or parenteral formulation 24 h after sham-irradiation, total-body irradiation (TBI) with 2.5-5.0% bone marrow sparing (TBI/BMx), or in nonirradiated sex-matched C57BL/6J mice and non-human primates (NHP). C57BL/6J mice were randomized to the following arms in two consecutive studies: sham-TBI [400 mg/kg, oral gavage (OG)], TBI/BM2.5 (400 mg/kg, OG), sham-TBI [200 mg/kg, subcutaneous (SC) injection], TBI/BM2.5 (200 mg/kg, SC), sham-TBI (100 mg/kg, SC), or nonirradiated [200 mg/kg, intramuscular (IM) injection]. The PK profile was also established in NHP exposed to TBI/BM5.0 (100 mg/kg, BID, OG). Genistein-aglycone serum concentrations were measured in all groups using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. The PK profile demonstrates 11% and 19% reductions in C-max and AUC(0-inf), respectively, among mice administered 400 mg/kg, OG, after TBI/BM2.5 compared to the sham-TBI control arm. Administration of 200 mg/kg SC in mice exposed to TBI/BM2.5 showed a 53% increase in AUC(0-inf) but a 28% reduction in C-max compared to the sham-TBI mice. The relative bioavailability of the OG route compared to the SC and IM routes in mice was 9% and 7%, respectively. After the OG route, the dose-normalized AUC(0-inf) was 13.37 (ng.h/mL)/(mg/kg) in TBI/BM2.5 mice compared to 6.95 (ng.h/mL)/(mg/kg) in TBI/BM5.0 NHPs. Linear regression of apparent clearances and weights of mice and NHPs yielded an allometric coefficient of 1.06. Based on these data, the effect of TBI/BMx on BIO 300 PK is considered minimal. Future studies should use SC and IM routes to maximize drug exposure when administered postirradiation. The allometric coefficient is useful in predicting therapeutic drug dose regimens across species for drug approval under the FDA animal rule. (C) 2022 by Radiation Research Society
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要