Automatic construction of coronary artery tree structure based on vessel blood flow tracking

CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS(2022)

引用 0|浏览5
暂无评分
摘要
We sought to propose an innovative vessel blood flow tracking (VBFT) method to extract coronary artery tree (CAT) and to assess the effectiveness of this VBFT versus the single-frame method. Construction of a CAT from a segmented artery is the basis of artificial intelligence-aided angiographic diagnosis. However, construction of a CAT using a single frame remains challenging, due to bifurcations and overlaps in two-dimensional angiograms. Overall, 13,222 angiograms, including 28,539 vessels, were retrospectively collected from 3275 patients and were then annotated. Coronary arteries were automatically segmented by a previously established deep neural networks (DNNs), and the skeleton lines were then extracted from segmentation images to construct CAT using the single-frame method and the VBFT method. Additionally, 1322 angiograms with 2201 vessels were used to test these two methods. Compared to the single-frame method, the VBFT method can significantly improve the accuracy of CAT as (84.3% vs. 72.3%; p < 0.001). Overlap (OV) was higher in the VBFT group than that in the Single-Frame group (91.1% vs. 87.5%; p < 0.001). The VBFT method significantly reduced the incidence of the lack of branching (7.30% vs. 13.9%, p < 0.001), insufficient length (6.70% vs. 11.0%, p < 0.001), and redundant branches (1.60% vs. 3.10%, p < 0.001). The VBFT method improved the extraction of a CAT structure, which will facilitate the development of artificial intelligence-aided angiographic diagnosis. Cardiologists can efficiently diagnose CAD using this method.
更多
查看译文
关键词
artificial intelligence, coronary angiography, deep neural networks, vessel segmentation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要