A study on the impact of the distance types involved in protein structure determination by NMR.

BIBM(2021)

引用 1|浏览10
暂无评分
摘要
The Distance Geometry Problem (DGP) consists of finding the coordinates of a given set of points where the distances between some pairs of points are known. The DGP has several applications and one of the most relevant ones arises in the context of structural biology, where NMR experiments are performed to estimate distances between some atom pairs in a given molecule, and the possible conformations for the molecule are calculated through the formulation and the solution of a DGP. We focus our attention on DGP instances for which some special assumptions allow us to discretize the DGP search space and to potentially perform the complete enumeration of the solution set. We refer to the subclass of DGP instances satisfying such discretizability assumptions as the Discretizable DGP (DDGP). In this context, we propose a new procedure for the generation of DDGP instances where real data and simulated data (from known molecular models) can coexist. Our procedure can give rise to peculiar DDGP instances that we use for studying the impact of every distance type, involved in NMR protein structure determination, on the quality of the found solutions. Surprisingly, our experiments suggest that the distance types implying a larger effect on the solution quality are not the ones related to NMR data, but rather the more abundant, but much less informative, van der Waals distance type.
更多
查看译文
关键词
protein structure determination,structure determination,nmr
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要