Estimation of Maximum Hail Diameters from FY-4A Satellite Data with a Machine Learning Method

REMOTE SENSING(2022)

引用 2|浏览12
暂无评分
摘要
The magnitude of damage caused by hail depends on its size; however, direct observation or indirect estimation of hail size remains a significant challenge. One primary reason for estimations by proxy, such as through remote sensing methods, is that empirical relationships or statistical models established in one region may not apply to other areas. This study employs a machine learning method to build a hail size estimation model without assuming relations in advance. It uses FY-4A AGRI data to provide cloud-top information and ERA5 data to add vertical environment information. Before training the model, we conducted a principal component analysis (PCA) to analyze the highly influential factors on hail sizes. A total of 18 features, composed of four groups, namely brightness temperature (BT), the difference in BT (BTD), thermodynamics, and dynamics groups, were chosen from 29 original features. Dynamic and BTD features show superior performance in identifying large hail. Although the selected features are more closely correlated to hail sizes than unselected ones, the relationships are complicated and nonlinear. As a result, a two-layer regression back propagation neural network (BPNN) model with powerful fitting ability is trained with selected features to predict maximum hail diameter (MHD). The linear fitting R-2 between predicted and observed MHDs is 0.52 on the test set, which signifies that our model performs well compared with other hail size estimation models. We also examine the model concerning all three hail cases in Shanghai, China, between 2019 and 2021. The model attained more satisfactory results than the radar-based maximum estimated hail size (MEHS) method, which overestimates the MHDs, thus further supporting the operational applications of our model.
更多
查看译文
关键词
hail size, FY-4A, machine learning, principal component analysis, neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要