Microstructure, Mechanical Properties and Corrosion Behaviors of Al-Li-Cu-Mg-Ag-Zn Alloys

MATERIALS(2022)

引用 0|浏览8
暂无评分
摘要
Combined with microstructure characterization and properties tests, the effects of Zn contents on the mechanical properties, corrosion behaviors, and microstructural evolution of extruded Al-Li-Cu-Mg-Ag alloys were investigated. The results show that the increase in Zn contents can accelerate hardening kinetics and improve the hardness of peak-aged alloys. The Zn-added alloys present non-recrystallization characteristics combined with partially small recrystallized grains along the grain boundaries, while the T1 phase with finer dimension and higher number density could explain the constantly increasing tensile strength. In addition, increasing Zn contents led to a lower corrosion current density and a shallower maximum intergranular corrosion depth, thus improving the corrosion resistance of the alloys. Zn addition, distributed in the central layer of T1 phases, not only facilitates the precipitation of more T1 phases but also reduces the corrosion potential difference between the T1 phase and the matrix. Therefore, adding 0.57 wt.% Zn to the alloy has an excellent combination of tensile strength and corrosion resistance. The properties induced by Zn under the T8 temper (solid solution treatment + water quenching + 5% pre-strain+ isothermal aging), however, are not as apparent as the T6 temper (solid solution treatment + water quenching + isothermal aging).
更多
查看译文
关键词
aluminum lithium alloys, Zn addition, mechanical properties, corrosion resistance, microstructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要