Meta-analysis and validation of genomic loci governing seedling and reproductive stage salinity tolerance in rice

PHYSIOLOGIA PLANTARUM(2022)

引用 15|浏览6
暂无评分
摘要
Identification of concurrent genomic regions contributing tolerance to salinity at the seedling and reproductive stages were done using 45 quantitative trait loci (QTL) mapping studies reporting 915 individual QTLs. The QTL-data were used to perform a meta-analysis to predict, validate and analyze the Meta-QTLs governing component traits contributing to salinity tolerance. We predicted a total of 65 and 49 Meta-QTLs distributed across the genome governing seedling and reproductive stage salinity tolerance, respectively. Salinity stress (EC similar to 10.0 dSm(-1)) was evaluated in a set of 32 genotypes grown hydroponically, from these eight extreme (highly tolerant and highly susceptible) genotypes were selected for validation of significant Meta-QTLs. Another set of eight previously known and reported (highly tolerant and highly susceptible) genotypes were evaluated under saline micro plot conditions (EC similar to 8.0 dSm(-1)) and used for validation of significant Meta-QTLs for reproductive stage salinity tolerance. The microsatellite marker "RM5635" linked to MSQTL4.2 (similar to 295.43 kb) was able to clearly differentiate contrasting genotypes for seedling stage salinity tolerance, whereas at the reproductive stage, none of the markers were able to validate the predicted Meta-QTL for salinity tolerance. Earlier reported, gene expression studies were used for candidate gene analysis of validated MSQTL4.2, which indicated the down regulation of 0s04g0423100, a gene encoding Monooxygenase-FAD binding domain containing protein. The traits associated with this Meta-QTL were root and shoot sodium and potassium concentration and leaf chlorophyll content. The identified and validated genomic region assumes a great significant role in seedling stage salinity tolerance in rice, and it can be used for marker-assisted backcross breeding programs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要