Effect of circadian system disruption on the concentration and daily oscillations of cortisol, progesterone, melatonin, serotonin, growth hormone, and core body temperature in periparturient dairy cattle

Journal of Dairy Science(2022)

引用 6|浏览5
暂无评分
摘要
Metabolic, circadian, sleep, and reproductive systems are integrated and reciprocally regulated, but the understanding of the mechanism is limited. To study this integrated regulation, the circadian timing system was disrupted by exposing late pregnant nonlactating (dry) cows to chronic shifts in the light-dark phase, and rhythms of body temperature and circulating cortisol (CORT), progesterone (P4), serotonin (5HT), melatonin (MEL), and growth hormone (GH) concentrations were measured. Specifically, across 2 identical studies (1 and 2), at 35 d before expected calving (BEC) multiparous cows were assigned to control (CON; n = 24) and exposed to 16 h light and 8 h dark or phase shift (PS; n = 24) treatments and exposed to 6-h light-dark phase shifts every 3 d until parturition. All cows were exposed to control lighting after calving. Blood samples were collected in the first study at 0600 h on d 35 BEC, d 21 BEC, and 2 d before calving, and d 0, 2, 9, 15, and 22 postpartum (PP). A subset of cows (n = 6/group) in study 1 was blood sampled every 4 h over 48 h beginning on d 23 BEC, 9 BEC, and 5 PP. Body temperature was measured every 30 min (n = 8–16/treatment) for 48 h at 23 BEC and 9 BEC in both studies; and at 14 PP and 60 PP only in study 2. Treatment did not affect levels of CORT, GH, or P4 at 0600 h, but overall level of 5HT was lower and MEL higher in PS cows across days sampled. A 2-component versus single-component cosinor model better described [>coefficient of determination (R2); 更多
查看译文
关键词
growth hormone,cortisol,progesterone,melatonin,serotonin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要