A Conditioned Place Preference for Heroin Is Signaled by Increased Dopamine and Direct Pathway Activity and Decreased Indirect Pathway Activity in the Nucleus Accumbens

JOURNAL OF NEUROSCIENCE(2022)

引用 11|浏览5
暂无评分
摘要
Repeated pairing of a drug with a neutral stimulus, such as a cue or context, leads to the attribution of the drug's reinforcing properties to that stimulus, and exposure to that stimulus in the absence of the drug can elicit drug-seeking. A principal role for the NAc in the response to drug-associated stimuli has been well documented. Direct and indirect pathway medium spiny neurons (dMSNs and iMSNs) have been shown to bidirectionally regulate cue-induced heroin-seeking in rats expressing addiction-like phenotypes, and a shift in NAc activity toward the direct pathway has been shown in mice following cocaine conditioned place preference (CPP). However, how NAc signaling guides heroin CPP, and whether heroin alters the balance of signaling between dMSNs and iMSNs, remains unknown. Moreover, the role of NAc dopamine signaling in heroin reinforcement is unclear. Here, we integrate fiber photometry for in vivo monitoring of dopamine and dMSN/iMSN calcium activity with a heroin CPP procedure in rats to begin to address these questions. We identify a sensitization-like response to heroin in the NAc, with prominent iMSN activity during initial heroin exposure and prominent dMSN activity following repeated heroin exposure. We demonstrate a ramp in dopamine activity, dMSN activation, and iMSN inactivation preceding entry into a heroin-paired context, and a decrease in dopamine activity, dMSN inactivation, and iMSN activation preceding exit from a heroin-paired context. Finally, we show that buprenorphine is sufficient to prevent the development of heroin CPP and reduce Fos activation in the NAc after conditioning. Together, these data support the hypothesis that an imbalance in NAc activity contributes to the development of drug-cue associations that can drive addiction processes.
更多
查看译文
关键词
dopamine,fiber photometry,heroin,NAc,reward
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要