Robust optical flow algorithm for general single cell segmentation

PLOS ONE(2022)

引用 2|浏览0
暂无评分
摘要
Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of paramount importance to elucidate and understand basic cellular processes. In an effort to increase available segmentation tools that can perform across research groups and platforms, we introduce a novel segmentation approach centered around optical flow and show that it achieves robust segmentation of single cells by validating it on multiple cell types, phenotypes, optical modalities, and in-vitro environments with or without labels. By leveraging cell movement in time-lapse imagery as a means to distinguish cells from their background and augmenting the output with machine vision operations, our algorithm reduces the number of adjustable parameters needed for manual optimization to two. We show that this approach offers the advantage of quicker processing times compared to contemporary machine learning based methods that require manual labeling for training, and in most cases achieves higher quality segmentation as well. This algorithm is packaged within MATLAB, offering an accessible means for general cell segmentation in a time-efficient manner.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要