Improved l-phenylglycine synthesis by introducing an engineered cofactor self-sufficient system.

Pengchao Wang,Xiwen Zhang, Yucheng Tao, Xubing Lv, Shengjie Cheng,Chengwei Liu

Synthetic and systems biotechnology(2021)

引用 4|浏览18
暂无评分
摘要
l-phenylglycine (L-phg) is a valuable non-proteinogenic amino acid used as a precursor to β-lactam antibiotics, antitumor agent taxol and many other pharmaceuticals. L-phg synthesis through microbial bioconversion allows for high enantioselectivity and sustainable production, which will be of great commercial and environmental value compared with organic synthesis methods. In this work, an L-phg synthesis pathway was built in Escherichia coli resulting in 0.23 mM L-phg production from 10 mM l-phenylalanine. Then, new hydroxymandelate synthases and hydroxymandelate oxidases were applied in the L-phg synthesis leading to a 5-fold increase in L-phg production. To address 2-oxoglutarate, NH4 +, and NADH shortage, a cofactor self-sufficient system was introduced, which converted by-product l-glutamate and NAD+ to these three cofactors simultaneously. In this way, L-phg increased 2.5-fold to 2.82 mM. Additionally, in order to reduce the loss of these three cofactors, a protein scaffold between synthesis pathway and cofactor regeneration modular was built, which further improved the L-phg production to 3.72 mM with a yield of 0.34 g/g L-phe. This work illustrated a strategy applying for whole-cell biocatalyst converting amino acid to its value-added chiral amine in a cofactor self-sufficient manner.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要