Thermodynamic Properties: Enthalpy, Entropy, Heat Capacity, and Bond Energies of Fluorinated Carboxylic Acids

Suarwee Snitsiriwat,Jason M Hudzik, Kingkan Chaisaward, Loryn R Stoler,Joseph W Bozzelli

JOURNAL OF PHYSICAL CHEMISTRY A(2022)

引用 1|浏览4
暂无评分
摘要
Fluorinated carboxylic acids and their radicals are becoming more prevalent in environmental waters and soils as they have been produced and used for numerous commercial applications. Understanding the thermochemical properties of fluorinated carboxylic acids will provide insights into the stability and reaction paths of these molecules in the environment, in body fluids, and in biological and biochemical processes. Structures and thermodynamic properties for over 50 species related to fluorinated carboxylic acids with two and three carbons are determined with density functional computational calculations B3LYP, M06-2X, and MN15 and higher ab initio levels CBS-QB3, CBS-APNO, and G4 of theory. The lowest energy structures, moments of inertia, vibrational frequencies, and internal rotor potentials of each target species are determined. Standard enthalpies of formation, Delta H-f(298)degrees, from CBS-APNO calculations show the smallest standard deviation among methods used in this work. Delta H-f(298)degrees values are determined via several series of isodesmic and/or isogyric reactions. Enthalpies of formation are determined for fluorinated acetic and propionic acids and their respective radicals corresponding to the loss of hydrogen and fluorine atoms. Heat capacities as a function of temperature, C-p(T), and entropy at 298 K, S298 degrees , are determined. Thermochemical properties for the fluorinated carbon groups used in group additivity are also developed. Bond dissociation energies (BDEs) for the carbon-hydrogen, carbon-fluorine, and oxygen-hydrogen (C-H, C-F, and O-H BDEs) in the acids are reported. The C-H, C-F, and O-H bond energies of the fluorinated carboxylic acids are in the range of 89-104, 101-125, and 109-113 kcal mol(-1), respectively. General trends show that the O-H bond energies on the acid group increase with the increase in the fluorine substitution. The strong carbon fluorine bonds in a fluorinated acid support the higher stability of the perfluorinated acids in the environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要