Extracellular vesicle-derived miR-511-3p from hypoxia preconditioned adipose mesenchymal stem cells ameliorates spinal cord injury through the TRAF6/S1P axis

BRAIN RESEARCH BULLETIN(2022)

引用 8|浏览8
暂无评分
摘要
Extracellular vesicle (EV) from hypoxic adipose tissue-derived mesenchymal stem cells (AD-MSCs) play critical roles in spinal cord injury (SCI) by transferring miRNAs to target cells through fusion with the cell membrane. However, the role of miR-511-3p within the AD-MSCs-derived EV in SCI is largely unknown. Western blotting results demonstrated the secretion of EVs derived from AD-MSCs under hypoxia (Hyp-EVs) was more than those under normoxia (Nor-EVs), and miR-511-3p expression was more enriched in Hyp-EVs. PC12 cells were stimulated with lipopolysaccharide (LPS) to induce cell damage. AD-MSCs were transfected with miR-511-3p mimic or miR-511-3p inhibitor to induce EVs-miR-511-3p overexpression or silencing. Cells treated with Hyp-EVs-miR-511-3p mimic reduced LPS-induced apoptosis, alleviated inflammation and promoted proliferation, while cells treated with Hyp-EVs-miR-511-3p inhibitor aggravated LPS-induced apoptosis and inflammation, and suppressed proliferation. Luciferase reporter gene assay revealed tumor necrosis factor receptor-associated factor 6 (TRAF6) was a target downstream gene of miR-511-3p. A series of gain-and loss-of-function experiments verified that TRAF6 could antagonize the effects of Hyp-EVs-miR-511-3p on inflammation, cell apoptosis and viability. Furthermore, cells treated with CYM5541, an agonist of sphingosine-1-phosphate receptor 3 (S1PR3), reversed the inhibitory effect of Hyp-EVs-miR-511-3p mimic on S1PR3 expression, inflammation and cell apoptosis. Finally, intravenously injection of Hyp-EVs-miR-511-3p mimic into SCI model rats obviously reduced inflammation and promoted neurological function recovery. In conclusion, EVs-derived miR-511-3p from hypoxia preconditioned AD-MSCs ameliorates SCI via TRAF6/S1P/NF-kappa B pathway, which indicates that miR-511-3p may be a potential therapeutic target for SCI.
更多
查看译文
关键词
Adipose-derived stem cells, Extracellular vesicle, Hypoxic, MiR-5113p, Spinal cord injury, S1P/NF-kappa B pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要