Detection of transcription factors binding to methylated DNA by deep recurrent neural network

BRIEFINGS IN BIOINFORMATICS(2022)

引用 13|浏览16
暂无评分
摘要
Transcription factors (TFs) are proteins specifically involved in gene expression regulation. It is generally accepted in epigenetics that methylated nucleotides could prevent the TFs from binding to DNA fragments. However, recent studies have confirmed that some TFs have capability to interact with methylated DNA fragments to further regulate gene expression. Although biochemical experiments could recognize TFs binding to methylated DNA sequences, these wet experimental methods are time-consuming and expensive. Machine learning methods provide a good choice for quickly identifying these TFs without experimental materials. Thus, this study aims to design a robust predictor to detect methylated DNA-bound TFs. We firstly proposed using tripeptide word vector feature to formulate protein samples. Subsequently, based on recurrent neural network with long short-term memory, a two-step computational model was designed. The first step predictor was utilized to discriminate transcription factors from non-transcription factors. Once proteins were predicted as TFs, the second step predictor was employed to judge whether the TFs can bind to methylated DNA. Through the independent dataset test, the accuracies of the first step and the second step are 86.63% and 73.59%, respectively. In addition, the statistical analysis of the distribution of tripeptides in training samples showed that the position and number of some tripeptides in the sequence could affect the binding of TFs to methylated DNA. Finally, on the basis of our model, a free web server was established based on the proposed model, which can be available at https://bioinfor.nefu.edu.cn/TFPM/.
更多
查看译文
关键词
transcription factors, methylated DNA, deep recurrent neural network, tripeptide word vector, tripeptide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要