Enabling Anionic Redox Stability of P2-Na5/6Li1/4Mn3/4O2 by Mg Substitution

ADVANCED MATERIALS(2022)

引用 40|浏览14
暂无评分
摘要
Oxygen-based anionic redox reactions have recently emerged as a lever to increase the capacity of Mn-rich layered oxide cathodes in addition to the charge compensation based on cationic redox reactions for sodium-ion batteries. Unfortunately, the irreversibility of anionic redox often aggravates irreversible structure change and poor cycling performance. Here, a stable anionic redox is achieved through substituting Na ions by Mg ions in P2-type Na0.83Li0.25Mn0.75O2. Density functional theory (DFT) calculations reveal that Mg substitution effectively decreases the oxygen chemical potential, causing an improvement in lattice oxygen stability. Moreover, at a highly desodiated state, Mg ions that remain in the lattice and interact with O 2p orbitals can decrease the undercoordinated oxygen and the nonbonded, electron-deficient O 2p states, facilitating the reversibility of oxygen redox. When cycled in the voltage range of 2.6-4.5 V where only anionic redox occurs for charge compensation, Na0.773Mg0.03Li0.25Mn0.75O2 presents a much better reversibility, giving a 4 times better cycle stability than that of Na0.83Li0.25Mn0.75O2. Experimentally, Na0.773Mg0.03Li0.25Mn0.75O2 exhibits a approximate to 1.1% volume expansion during sodium insertion/extraction, suggestive of a "zero-strain" cathode. Overall, the work opens a new avenue for enhancing anionic reversibility of oxygen-related Mn-rich cathodes.
更多
查看译文
关键词
anionic redox reactions, Mg incorporation, Mn-rich cathodes, sodium-ion batteries, zero-strain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要