WeChat Mini Program
Old Version Features

一种基于深度强化学习与概率性能感知的边缘计算环境多工作流卸载方法

Computer Science(2021)

Cited 2|Views28
Abstract
移动边缘计算是一种新兴的分布式和泛在计算模式,其将计算密集型和时延敏感型任务转移到附近的边缘服务器,有效缓解了移动终端资源不足的问题,显著减小了用户与计算处理节点之间的通信传输开销.然而,如果多个用户同时提出计算密集型任务请求,特别是流程化的工作流任务请求,边缘计算环境往往难以有效地进行响应,并会造成任务拥塞.另外,受任务负载、电力供给、通信能力的实时变化等不利因素的影响,边缘服务器本身的性能总是处于波动和变化中,从而为保证任务执行效能和用户感知服务效率带来了挑战.针对上述问题,文中提出了一种基于深度Q网络(DQN)与概率性能感知机制的边缘计算环境多工作流调度方法.首先对边缘云服务器的历史性能数据进行概率分析,然后利用获得的性能概率分布数据驱动DQN模型,不断迭代优化,生成多工作流的卸载策略.在实验验证环节,基于边缘服务器位置数据集、性能测试数据和多个科学工作流模板,在反映不同系统负载水平的多个场景下进行了模拟实验.实验结果表明,所提方法在多工作流执行效率方面明显优于传统方法.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined