DR AF T 3 D-imaging inspired improvements to hearing model in parasitoid fly Ormia ochracea

semanticscholar(2021)

引用 0|浏览0
暂无评分
摘要
Although most binaural organisms localize sound sources using neurological structures to amplify the sounds they hear, some animals use mechanically coupled hearing organs to do so. One example, the parasitoid fly Ormia ochracea, has astoundingly accurate sound localization abilities and can locate objects in the azimuthal plane with a precision of 2°, equal to that of humans. This is accomplished despite an intertympanal distance of only 1.2 mm, which is about 1/100th of the wavelength of the sound emitted by the crickets that it parasitizes. In 1995, Miles et al. developed a model for hearing mechanics in O. Ochracea, which works well for incoming sound angles of less than ±30°, but suffers from reduced accuracy at higher angles. Despite this, it has served as the basis for multiple bio-inspired microphone designs for decades. Here, we present critical modifications to the classic O. ochracea hearing model based on information from 3D reconstructions of O. ochracea’s tympana. The 3D images reveal that the tympana have curved lateral faces in addition to the flat front-facing prosternal membranes represented in the 1995 model. To mimic these faces, we incorporated spatiallyvarying spring and damper coefficients that respond asymmetrically to incident sound waves, making a new quasi-two-dimensional (q2D) model. This q2D model has high accuracy (average errors of less than 10%) for the entire range of incoming sound angles. This improved biomechanical hearing model can inform the development of new technologies and may help to play a key role in developing improved hearing aids. 1
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要