Effects of eddies on the subduction and movement of water masses reaching the 137∘E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begi

Journal of Oceanography(2021)

引用 7|浏览3
暂无评分
摘要
The effects of eddies on the subduction and movement of water masses reaching the 137∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} E section are examined in a nominal 10-km resolution ocean general circulation model using a backward-particle tracking method. Target water masses are the Tropical Water (TW), the Eastern Subtropical Mode Water (ESTMW), the Subtropical Mode Water (STMW), and lighter variety of the Central Mode Water (L-CMW). Each particle is classified as a typical water mass according to its physical properties in the subduction area, and into eddy and non-eddy components based on the Okubo–Weiss parameter. During subduction, each water mass tends to be located in anticyclonic eddies rather than cyclonic eddies. The effects of eddies on the spatial distribution of water mass and the time taken by the water mass to reach the 137∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} E section differ for each water mass. For the TW, the water mass in the mesoscale eddies tends to be distributed along the eastward Subtropical Countercurrent (STCC), which moves eastward from the 137∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} E to Hawaii. The eddy component takes lesser time to reach the 137∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} E section as compared to the non-eddy component. For ESTMW, a similar pattern appears around STCC but its effect is confined to the west of Hawaii. For STMW, subduction and distribution occur predominantly in anticyclonic eddies. A part of L-CMW crosses the Kuroshio Extension when cyclonic eddies are pinched off from the troughs of the Kuroshio Extension, reaching the 137∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} E section within 2 years.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要