Sonocatalytic recovery of ceria from graphite and inhibition of graphite erosion by ionic liquid based platinum nanocatalyst

Ultrasonics Sonochemistry(2022)

引用 4|浏览0
暂无评分
摘要
Use of ultrasound as an intensified non-destructive decontamination technique for processing graphite limits its reusability beyond a few number of decontamination cycles due to the exfoliation of graphite due to cavitation effects. The current work establishes that the use of platinum nanoparticles in the leachant reduces the erosion of graphite substrate due to cavitation. It presents an improved way of sonochemical recovery of ceria using a mixture of nitric acid, formic acid and hydrazinium nitrate in the presence of platinum nanoparticles and ionic liquid. The platinum nanoparticles catalyst in ionic liquid prevented the generation of the carbon residue due to the combined effect of denitration and reduced sonication. The presence of the catalyst showed a fivefold increase in dissolution kinetics of ceria as well as absence of graphite erosion, facilitating better chances of graphite recycling than the decontamination without the catalyst. The catalytic approach offers a better recycle strategy for graphite with reduced exfoliation and NOx generation due to denitration, making it a more sustainable decontamination process. Since ceria is used as a surrogate for plutonium oxide, the results can be extended to decontaminate such deposits clearly establishing the utility of the presented results in the nuclear industry.
更多
查看译文
关键词
Decontamination kinetics,Ultrasound,Ionic liquid,Reduced graphene oxide,Platinum nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要