Times Square Sampling: An Adaptive Algorithm for Free Energy Estimation

Cristian Predescu,Michael Snarski, Avi Robinson-Mosher, Duluxan Sritharan, Tamas Szalay,David E. Shaw

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS(2024)

引用 0|浏览3
暂无评分
摘要
Estimating free energy differences, an important problem in computational drug discovery and in a wide range of other application areas, commonly involves a computationally intensive process of sampling a family of high-dimensional probability distributions and a procedure for computing estimates based on those samples. The variance of the free energy estimate of interest typically depends strongly on how the total computational resources available for sampling are divided among the distributions, but determining an efficient allocation is difficult without sampling the distributions. Here we introduce the Times Square sampling algorithm, a novel on-the-fly estimation method that dynamically allocates resources in such a way as to significantly accelerate the estimation of free energies and other observables, while providing rigorous convergence guarantees for the estimators. We also show that it is possible, surprisingly, for on-the-fly free energy estimation to achieve lower asymptotic variance than the maximum-likelihood estimator MBAR, raising the prospect that on-the-fly estimation could reduce variance in a variety of other statistical applications. Supplementary materials for this article are available online.
更多
查看译文
关键词
Adaptive Monte Carlo,Free energy calculations,Partition function ratios,Simulated tempering,Stochastic approximation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要