Graded variation in cortical T1w/T2w myelination during adolescence

biorxiv(2021)

引用 1|浏览3
暂无评分
摘要
Myelination influences brain connectivity during sensitive periods of development by enhancing neural signaling speed and regulating synapse formation to reduce plasticity. However, in vivo studies characterizing the maturational timing of cortical myelination during human development remain scant. Here, we take advantage of recent advances in high-resolution cortical T1w/T2w myelin mapping methods, including principled correction of B1+ transmit field effects, using data from the Human Connectome Project in Development (N=628, ages 8-21) to characterize the maturational timing of myelination from childhood through early adulthood throughout the cerebral neocortex. We apply Bayesian spline models and functional latent clustering analysis to demonstrate graded variation in the rate of cortical T1w/T2w myelin growth in neocortical areas that is strongly correlated with the sensorimotor-association (S-A) axis of cortical organization reported by others. In sensorimotor areas T1w/T2w myelin starts at high levels at early ages, increases at a fast pace, and decelerates at later ages (18-21). In intermediate multimodal areas along the S-A axis, T1w/T2w myelin tends to start at intermediate levels and increase linearly at an intermediate pace. In transmodal and paralimbic association areas high along the S-A axis, T1w/T2w myelin tends to start at low levels and increase linearly at the slowest pace. These data provide evidence for graded variation along the S-A axis in the rate of cortical myelination during adolescence, which could reflect ongoing plasticity underlying the development of complex information processing and psychological functioning. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
t1w/t2w myelination,cortical t1w/t2w,adolescence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要