LOGEN: Few-Shot Logical Knowledge-Conditioned Text Generation With Self-Training

arxiv(2023)

引用 0|浏览62
暂无评分
摘要
Natural language generation from structured data mainly focuses on surface-level descriptions, suffering from uncontrollable content selection and low fidelity. Previous works leverage logical forms to facilitate logical knowledge-conditioned text generation. Though achieving remarkable progress, they are data-hungry, which makes the adoption for real-world applications challenging with limited data. To this end, this paper proposes a unified framework for logical knowledge-conditioned text generation in the few-shot setting. With only a few seeds logical forms (e.g., 20/100 shot), our approach leverages self-training and samples pseudo logical forms based on content and structure consistency. Experimental results demonstrate that our approach can obtain better few-shot performance than baselines.
更多
查看译文
关键词
Few-shot,Self-training,Text Generation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络